T ——— T 3 . A ARSI T
T e e e ey
H S St IR R

e

L — i i

Dovelopmem of a Voleo Funnol Systom-
1@1 St

1 & .
oy S e -
= (10 R /h b

g pa— -
\ o Lbeed]
o gt A /\ SR’

2 gL

| S
.

P

ﬂﬂﬂ Fl
Lo
=
=
B~
g

[Sy
®
(_j
:_
, i
-’\

o
&

Prepared for:
Defense Advanced Research Projects Agency

Report No. 3972 Bolt Beranek and Newman Inc.

DEVELOPMENT OF A VOICE FUNNEL SYSTEM

QUARTERLY TECHNICAL REPORT NO. 1
15 July 1978 to 31 October 1978

30 November 1978

This research was sponsored by the

Defense Advanced Research Projects

Agency under ARPA Order No.: 3653

Contract No.: MDA903-78-C-0356

Monitored by DARPA/IPTO

Effective date of contract: 1 September 1978
Contract Expiration date: 30 November 1980
Principal investigator: R. D. Rettberg

DDC
U o~ N0 1]

DEC 4 1978
Dr. Robert E. Kahn, Deputy Director LUJ[EJUU]5
B

Prepared for:

Defense Advanced Research Projects Agency
Information Processing Techniques Office
1400 Wilson Boulevard

Arlington, VA 22209

The views and conclusions contained in this document are those of
the author and should not be interpreted as necessarily
representing the official policies, either express or implied, of
the Defense Advanced Research Projects Agency or the United
States Government.

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited ' |

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE ("hen Date Entered)
READ INSTRUCTIONS
. REPO NUMBER 2. GOVY ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

ical
DEVELOPMENT OF A VOICE FUNNEL SYSTEM, Quareerly Techorics

QUARTERLY TECHNICAL REPORT NO. 1

15 July 1978 ,to 31 Oct. 1979

- €. PERFORMING ORG. REPORT NUMBER

3972

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

R. Rettberg MDA903-78-C-0356 -

. 10. RA T. PR T
9. PERFORMING ORGANIZATION NAME AND ADDRESS P:gg % ."QERLKS'JS:‘T Nqu'JECT ASK
Bolt Beranek and Newman Inc. =02 ARPA Order No. 3653

50 Moulton Street, Cambridge, MA 02138

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Defense Advanced Research Projects Agency =0 Noverber 1978

13. NUMBER OF PAGES

1400 Wilson Blvd., Arlington, VA 22209

14. MONITORING AGENCY NAME & ADDRESS(/f different from Controlling Office) 1S. SECURITY CLASS. (of this report)

Unclassified

185a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report)

Eﬁgiiﬁi ON STATEMENT A

for public release;
Distribution Unlimited)

UNLIMITED

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if dilferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary end identify by block number)

Voice Funnel, Digitized Speech, Packet Switching, Butterfly switch,
Multiprocessor

20. ABSTRACT (Continue on reverse aide il necessary end identily by dlock number)

- This quarterly Technical report covers work performed during the period
noted on the development of a high-speed interface, called a voice funnel,
etween digitized speech streams and a packet-switching communications
network.

DD | 5n'ss 1473 €oimion oF 1 nov ¢8 1S oesoLETE ss1

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

/
- &

N

Report No. 3972

e
2.

3

Bolt Beranek and Newman

TABLE OF CONTENTS

o die EHle m R R R R o S O R e
Broeessor Sefleefdont o il st iici N i e e e
2.1 Processor Candidates
R e SIS S D G e N e [l e Is
2.3 78000 Performance Evaluation . . .
2.3.1 PDP-11 Benchmark
2+3.2 28000 Berichalk . « « « s « » s o »
2.3.3 A Discussion of the Benchmarks
2+43:3.1 Code SLAE < « 5 o & % wim @ % w @ W o
2.3.3.2 Calling a Global Routine . . .
2.3.3.3 Returning from a Routine
2.3.3.4 Saving and Restoring Registers
2.3.3.5 Local Space Allocation and Deallocation
2.3.3.6 Setting Up Parameters for the Call
2.3.3.7 Making Parameters Accessible
2.3.3.8 A Typical Loop Iteration .

2.3.4 Conclusions from the Benchmark

Processor Node 1Issues . « o « s « & o & s o s &

Juz MBMEPY o 5 % e o W e e m W e R e e e e e
3.3 Memory Management « o v o & o o w0 0 @ uo

3.4 boeBl T/0 & 5 5 v v % 5 % 5 2 s v own ve v

Inec.

O N U o wow

10

12
12
12
13
13
13
14
14
17
18

22

it 4

-
S
Xy

ol SREEPMERE

Report No. 3972 Bolt Beranek and Newman Inc.
1. Introduction

The combination of digital speech techniques with
packet-switching technology can significantly increase the future
voice transmission capability of the Department of Defense. To
achieve this combination, however, requires a high speed
interface between the digitized voice and the communications
network. Bolt Beranek and Newman Inc. has been awarded a
contract to design and develop a system which meets this need.
The system, called a Voice Funnel, 1is a concentrator for
digitized speech streams; it can combine on the order of 100 to
1000 streams with a high combined data rate (in the range of 2 to

20 Mbps).

The Voice Funnel requires high data rate support; many
connectiohs; and the ability to perform processing in order to
control the machine and the data streams as well as to support
sophisticated hardware and protocol interfaces to both the
vocoders and the high bandwidth network. A new machine
configuration which meets these requirements is described in BBN
Report No. 3501, "A New Multiprocessor Architecture.” We will

assume familiarity with that report for the discussions here.

This Quarterly Technical Report covers the activity during
the first few months of this project. During this time, most of
the effort has concentrated on the design of the machine which is
the foundation of the Voice Funnel. This machine consists of a

number of independent processing nodes which are interconnected

Report No. 3972 Bolt Beranek and Newman Inc.

by a switch. The design of this switch is perhaps the most
unique portion of this machine; it is certainly the most

thoroughly studied and reported portion (see BBN Report No.

3501). During this quarter, we have made significant progress in
defining the processing node and have continued our design of the
switch. In light of the previous report, this Quarterly
Technical Report concentrates on the processor choice and

processing node design.

RS —

| Zr==—=1

b e | S | g |

-
.

| i

 S— | Gw—

Csamvand

ey

n
D
|
U

Report No. 3972 Bolt Beranek and Newman Inc.

2. Processor Selection

The processor we have selected for use in the Voice Funnel
is Zilog's Z8000. This machine has been announced with delivery
expected before the summer of 1979. We have selected it because
1) it 1is a 16-bit microprocessor, 2) it has a reasonably high
instruction execution rate, 3) it can manipulate a 23-bit virtual
address space, and 4) it has a compatible memory management

device.

A review of the competing processor candidates will be
presented in this section, followed by a discussion of address
spaces. Finally, since we find the Z8000 attractive as a
processor, we will examine its instruction Qet and performance

through one benchmark programming example.
2.1 Processor Candidates

There are three categories of candidates for the processor

in the Voice Funnel:

1. Commercial minicomputer (e.g. PDP-11)
2. Commercial microprocessor

3. Custom microprogrammed processor

The advantage of a commercial minicomputer is the commitment
on the part of the manufacturer: it is 1likely that compatible
processors which are more powerful and/or lower in cost will be

produced in the future. Furthermore, a complete 1line of

-3 e

Report No. 3972 Bolt Beranek and Newman Inc.

compatible equipment and software 1is probably available. For
microprocessors this has been true only aver a very limited
range. For example, the 8080 is now available at lower cost and
in much faster versions, but the new architecture, the 8086, is
only awkwardly compatible with the 8080. Similarly, Zilog with
their Z8000 and Motorola with their M68000 have developed new
architectures for their new products. A custom processor is even
worse in this respect, since every product enhancement must be

supplied by local effort.

The advantages of a commercial microprocessor are its small
size, 1low cost, and multiple sourcing. The first two are
particularly important since we expect to have many processors in
our system, which puts a premium on a processor which has a high
performance-to-size ratio as well as a high performance-to-cost
ratio. We would also like to have a machine which adapts well to
technological advancément. This is, after all, the age of LSI
and even VLSI. It is clear that these technologies offer so much
that it 'is hard to avoid taking advantage of them. The pattern
of multiple sourcing is simply an added benefit. Multiple
sourcing 1is not common in the arena of commercial minicomputers;
the vulnerability that results from a single supplier can be
serious. A custom machine <can be of moderate cost (between a
commercial mini and a micro) but its size is much larger than a

micro.

Report No. 3972 Bolt Beranek and Newman Inc.

The advantage of a custom microprogrammed processor comes
from its being custom; it can be designed to fit well into the
overall structure of the machine. If other available machines
have serious system deficiencies, a custom processor design could
be a better choice than trying to correct the problem or trying
to work around it. Fortunately, as we will see later, there are

available machines which are acceptable.

The - second advantage of a custom microprogrammed processor
comes from microprogramming. This permits efficient I/0 device
design and flexibility in the macro-level machine because of the
very high rate of microinstruction execution. In raw cycle time,
however, the microprocessor should eventually win since it

eliminates inter-chip signals.
2.2 Address Space

Perhaps the most important criterion that we have wused to
select a processor is the need for a large address space. There
are two address spaces involved: the physical address space and
the virtual address space. The physical address space must be
large enough to hold all of the memory in the machine. The
virtual address space must be large enough to hold the entire

process: its code and all of its data.

Experience has repeatedly shown that a 16-bit virtual
address space 1is simply too small. Mapping hardware has often

been suggested as a mechanism which can be used to expand the

“«5 w

Report No. 3972 Bolt Beranek and Newman Inc.

virtual address space. While a mapping mechanism is an
appropriate mechanism for providing a virtual machine to user
processes as in an operating system, its use for expansion of the
virtual address space is incorrect. The reason for this is that
it is too expensive and too awkward to set +the maps prior to
every memory reference. As a result, the program must be
organized around the use of the maps. This is too large a burden
to place on the programmer. As a result, programs end up being
squeezed into the true .virtual address space (as is the case with
the UNIX kernel) or being chopped into many separate processes,
with a serious increase in complexity and a serious 1loss of

efficiency.

It 1is not <clear how 1large these two spaces must be. An
argument is made later that a 24-bit physical address space is
adequate for the Voice Funnel, but it is very hard to know how
large a virtual space is required; at 1least we know that an

address space of 16 bits is too small.

Fortunately, Zilog's 28000 provides both a large physical
and a large virtual address space. Although this machine is a
16-bit processor, it has facilities which permit manipulation of
23 bits of virtual address. Furthermore, Zilog has announced a
memory-management device which supports a 24-bit physical address

space.

Report No. 3972 Bolt Beranek and Newman Inc,

2.3 28000 Performance Evaluation

It has been pointed out that one of the major advantages of
the 28000 1is 1its speed. To investigate this and to gain some
insight as to the quality of the Z8000 we will investigate one
benchmark program. From that benchmark we will get estimates of
28000 speed and code size. As a point of reference, we will use

the PDP-11.

The benchmark consists of a routine that allocates a large
local array and calls a routine which returns the sum of that
array. This benchmark exhibits calling costs, allocation costs,
looping ease, and a reasonable amount of stack manipulation. The

following BLISS-11 program is the benchmark:

MODULE BenchMark(OPTIMIZE,SAFE,NOUNAMES,FINAL,MAIN)

= BEGIN
GLOBAL ROUTINE WordArraySum(Array,Size)s=
BEGIN
WORD LOCAL sum,pointer;
sum _ O;
pointer _ .array;
DECR counter FROM .Size TO 1
DO BEGIN
sum _ .sum + ..pointer;
pointer _ .pointer + 2;
END;
.sum
END;

GLOBAL ROUTINE Benchs=
BEGIN
WORD LOCAL vector(300];
WordArraySum(vector,300);
END;

END ELUDOM

Report No. 3972 Bolt Beranek and Newman Inc.

From this benchmark we can hope to get reasonable measures
of the costs of the following activities (the abbreviations in

parentheses will be used in later tables):

Calling a global routine (Call)
Returning from a routine (Ret)
Register allocation (Sav+Res)
Parameter setup (Parm Set)
L Parameter access (Parm Acc)
A typical loop iteration (Loop)
Local space allocation (Loc Alle)
Local space deallocation (Loc Dalle)

2.3.1 PDP-11 Benchmark

The BLISS-11 compiler produced the following code for this

benchmark. The code is verbatim except for comments which have

been added to the PDP-11 code for clarity.

Report No. 3972 Bolt Beranek and Newman Inc.

SRS ———

; BLIS11 V.78095 Thursday 21-Sep-78 11:01.26 BENCH.B11 ‘
.PDP10 i
; 0001 MODULE BenchMark(OPTIMIZE,SAFE,NOUNAMES,FINAL,MAIN) {
= BEGIN
; 0002
.SBTTL GLOBAL ROUTINE WordArraySum(Array,Size)s=
; 0003 GLOBAL ROUTINE WordArraySum(Array,Size)=
; 0004 BEGIN
; 0005 WORD LOCAL sum,pointer;
; 0006 sum _ 0;
; 0007 pointer _ .array;
; 0008 DECR counter FROM .Size TO 1
; 0009 DO BEGIN
; 0010 sum _ .sum + ..pointer;
; 0011 pointer _ .pointer + 2;
; 0012 END;
; 0013 .sSum
; 0014 END;
; 0015
.TITLE BENCHMARK
.CSECT BENC.C
WORDARRAYSUM: 1
JSR R$1,$SAV2 ; Allocate working space
CLR R$0 ; Clear sum
MOV 12(SP) ,R$1 ; Get Parms: R1 <~ Array pointer
MOV 10(SP),R$2 : R2 <- Array size
BR L$4 ; Enter loop, check size zero
L$3: ADD (R$1)+,R$0 ; Loop: Add word, advance pntr.
DEC R$2 : Cecrement counter
L$4: BGT L3$3 : Repeat if more entries
RTS PC ; Go home, (Get Regs: coroutine)

ROUTINE SIZE: 12

Report No. 3972

version

.GLOBL WORDARRAYSUM
.SBTTL GLOBAL ROUTINE Benchs=
; 0016 GLOBAL ROUTINE Benchs

’

; 0017 BEGIN

; 0018 WORD LOCAL vector([300];
; 0019 WordArraySum(vector,300)
; 0020 END;

; 0021

.CSECT -BENC.C

BENCH:
SUB #1130,SP ;Allocate: Local array, 300 words
MoV #2,-(SP) ; Set Parms: Array pointer
ADD SP,@sSP s To array above this on stack
MOV #454 - (SP) : Array size is 300 decimal
JSR PC,WORDARRAYSUM ; Global routine call
ADD #1134,SP ; Deallc: parms and local array
RTS PC ; Go home

; ROUTINE SIZE: 12

.GLOBL BENCH
; 0022 END ELUDOM

.GLOBL $SAV2
+.CSECT BENC.G

$BREG: .BLKW 1

Size: 26+0

Run Time: O Seconds
Core Used: 12K
Compilation Complete

“e we we we

.END BENCHMARK

2.3.2 28000 Benchmark

For comparison with the PDP-11 code, here

of the benchmark for the Z8000. The

is the most efficient way we could find to do the task,

to, say, the cleanest way to do the task.

Bolt Beranek and Newman Inc.

is a hand-coded

version shown here

compared

=

Report No. 3972

WORDARRAYSUM:
PSHL RR2
PSH RY4
CLR RO
LDL RR2,16(SP)
LD RY4,12(SP)
JR CLR,L$2
L$1: ADD RO, (RR2)

INCR R2,#2
DJNZ RY4,L$1

L$2: POP R4

POPL RR2

RET ALWYS
BENCH:

SUB SP,#(1130)

PSHL (SP),SP
INCR (SP) , iU

PSH (SP),#454
CALL WORDARRAYSUM
ADD SP,#(1130+6)
RET ALWYS

2.3.3 A Discussion of the Benchmarks

We will discuss those

categories mentioned in Section 2.3.

2.3.3.1 Code Size

Both routines are about the

Bolt Beranek and Newman Inc.

We We we Ve We e we W W we we W

We we Ve we we we we

Same

Allocate: Reg for array pointer
Reg for array counter
Clear the sum we are making
Get Parms: Array pointer
Array size
If size is zero: skip loop
LOOP: Add next array entry
advance the pointer
decr cntr and loop?
Deallocate: Both
Regs
Go home, condition: always

Allocate: Local word array(300]
Set up Parms: Push and
align array pntr
and array size 300
Call global routine
Deall: Parms and Array
Go Home, condition: Always

two routines in the context of the

size. The lack of a

uniform dual-operand addressing structure for the Z8000 might be
expected to cause larger code sizes 1in some situations. For
example, both routines need do some manipulations of
parameters that are on the stack. The PDP-11 version manages
this cleanly since memory can be treated identically to
registers. The Z8000 manages by having a convenient
instruction, an increment instruction which 1is capable of an

indirect reference.

- 11

Since we have a pointer to the

parameter,

Report No. 3972 Bolt Beranek and Newman Inc.

and the increment is small, we can do the address manipulation on

the stack.
2.3.3.2 Calling a Global Routine

Both.versions are effectively equivalent.
2.3.3.3 Returning From a Routine

Both versions are fine; the Z8000 has a conditional return
that checks the state of the condition codes, an interesting

idea.
2.3.3.4 Saving and Restoring Registers

The PDP-11 version uses a standard PDP-11 technique for
saving registers: a global routine is called that does the save
and then does a coroutine return so that when the routine
finishes the registers will be restored automatically. In all
cases except the save of one register, on all PDP-~11 models, this
technique 1is faster and produces less code. A more traditional
technique would look like:

MOV R1,(SP)- ; Allocate: Register
MOV R2,(SP)- and another
<routine body>

MOV +(SP),R2 ; Deallocate: Register
MOV +(SP),R1 and another

We will assume this is the technique wused by the PDP-11
version of the benchmarks. It is interesting, however, to note
that coroutine linkages are not a natural programming primitive

provided by the Z8000.
-« 12 -

; Report No. 3972 Bolt Beranek and Newman Inc.

- The 28000 register saves are now identical to the PDP-11
technique. The existence of a block register transfer
instruction 1is somewhat irrelevant since it copies upward in
memory while the stack grows downward. This means to use it you

must first align the stack pointer. In most cases it is easier

to use push and pop instructions.

2.3.3.5 Local Space Allocation and Deallocation

| In both versions this is a simple addition or subtraction

from the stack pointer. f
2.3.3.6 Setting Up Parameters for the Call

The PDP-11 version proceeds by pushing the offset from the
stack pointer to the array onto the stack and then adding the

stack pointer to it.

The nice quality of this operation is the addition that is
done on the stack. This single addition might have cost a
register allocation, a move of the stack pointer, an addition,
and then the deallocation of the register. The 28000 version

manages the same feat via the increment instruction.
2.3.3.7 Making Parameters Accessible

In these examples this category means getting the parameters

off the stack and into the registers. Both versions have little

trouble with this.

- 13 =

_ . — __,__________“ ‘

Report No. 3972 Bolt Beranek and Newman Inc. ?

2.3.3.8 A Typical Loop Iteration

The 1loop consists of four parts: addition, pointer
advancement, counter decrement, and conditional branch. The
PDP-11 version is able to combine the first two, while the Z8000

version is able to combine the second two.

The 28000 version is more attractive in some ways. The
PDP-11 attitude was that the branch would be able to use the last
data manipulation result via the condition codes to drive the
branching decision. This has not turned out to be true and has
often caused practices such as placing a zero value on the end of
arrays to act as a flag. The decrement and skip on zero

instruction provided by the Z8000 is better; it would be even

——

better, of course, if it had some range of increments, and

condition codes.
2.3.4 Conclusions from the Benchmark

The tables below compare three machines: the LSI-11, the 1
Z8000 running in nonsegmented mode, and the Z8000 running 1in
segmented mode. The LSI-11 1is a machine that addresses 2716
{ bytes naturally, as is the Z8000 running in nonsegmented mode;
the Z8000 running in segmented mode can address 2723 bytes and
hence 1is slowed somewhat by having to manipulate larger

addresses.

The first table below shows code size, memory fetches, and

execution times for all three machines. All fetch counts are in

o 3% -

Report No. 3972 Bolt Beranek and Newman Inc.

16-bit words, all code sizes are in 16-bit words, and all

execution times are in microseconds.

LSI-11 Nonsegmented Z8000 Segmented Z800
Category Time Size Fetch Time Size Fetch Time Size Fetch
Call 6.95 2 2 1.75 2 2 2.5 3 3
Ret 5.25 1 2 1.5 1 2 2.25 1 3
Sav+Res 20.3 4 8 T40 y 8 8.5 y 10
Parm Set 19.6 5 9 6.0 4 8 6.75 4 9
Parm Acc 12.3 4 6 5.0 4 6 6.5 4 1
Loop 12.6 3 y 3.75 3 4 3.7 3 4
Loc Allc 4.9 2 2 il 2 2 1.75 2 2
Loc Dall 4.9 2 2 1275 2 2 1..75 2 2

The next table contains the same values converted to

percentages of their LSI-11 equivalents.

Nonsegmented 28000 Segmented Z8000
Category Time Size Fetches Time Size Fetches
Call 25 100 100 36 150 150
Ret 28 100 100 43 100 150
Sav+Res 34 100 100 42 100 125
Parm Set 31 80 89 34 80 100
Parm Acc 38 100 100 49 100 117
Loop 29 100 100 29 100 100
Loc Allc 36 100 100 36 100 100
Loc Dallce 36 100 100 36 100 100
Averages 32% 98% 98% 38% 104% 118%

In summary:
- The code density of the Z8000 is very similar to that of a
PDP=-11.

- The execution speed of the Z8000 is about 3 times that of an
LSI=11.

- 15 -

St nn e deicd

Report No. 3972 Bolt Beranek and Newman Inc.

- It is straightforward to code those things that programs do

most often. :

- A few nonuniformities in the Z8000's 1instruction set will
make code generation more difficult than for the PDP-11, but 1

L in general not too much more difficult.

Report No. 3972 Bolt Beranek and Newman Inc.
3. Processor Node Issues

The processing node consists of 5 pieces: a processor,
memory, memory management, local I/0, and the switch interface.

We will consider each of these components in turn.
3.1 The Processor

Although it now seems very likely that the initial design
will use a Zilog Z8000 processor, it is wuseful to examine not
just the characteristics of that specific processor, but also
those attributes of an abstract processor that might affect the

design of the processing node, for example:

- How fast is it?

- Does it multipleﬁ its address and data or are they
presented simultaneously?

- Does the processor do its own refreshing or will extra
hardware be required?

- How wide is the word?

- How wide is an address?

- Are there multiple protection modes?

- How does the processor interact with I/0?

- Are I/0 addresses in a separate address space?

- What are the provisions for independent DMAs and how do
these 1interact with the processor and memory manager?

- How does the interrupt system work?

- 17 =

Report No. 3972 Bolt Beranek and Newman Inc.

There are some primitives which are specifically important
for a multiprocessor such as a facility for "locking", e.g., a
test and clear instruction or some semaphore primitives. At
least some kind of read-modify-write bus operation is needed in

order to guarantee indivisibility.

An important issue has to do with how closely tied the
processor is to its memory. In this system, the processor may
have to wait significant periods of time for the datum fetched.
Most processors include some kind of "wait" input, but these do
not always operate easily or smoothly. In this case, we have the
further complication that the wait time may be quite significant
(as requests traverse the switch). If the wait state interferes
with real-time operations, e.g., refreshing memory, there may be
a problem. Those processors which "wait" by stopping their clock
may have a maximum wait time imposed by the constraints of

internal dynamic memory.

3.2 Memory

The memory in each processor node serves not only as the
local memory for the processor and I/0 in that processor node but
also as a portion of the global memory space which is accessible

from any processor node.

Perhaps the largest problem in designing the memory for the
processor node 1is permitting flexibility in memory size without

mounting the memory components on a separate board.

. 58 »

Report No. 3972 Bolt Beranek and Newman Inc.

The technology used for the memory circuitry 1is rather
straightforward. Dynamic semiconductor memories are dense and
inexpensive. The problem of refresh 1is solved by the Z8000

processor, leaving only timing and error control.

Error control 1is the most difficult question. The current
industry wisdom holds that 1large dynamic memory systems need
error detection AND correction (EDAC). A Voice Funnel, however,
can have many independent processor nodes, each with its own
memory modules. If one or two are down in the system as a whole,
that 1is not a big loss. An appropriate memory management scheme
should be able to isolate the application software from memory
failures. This simplifies our requirement to only a simple
method of detecting memory errors, e.g., parity. We do not have
to spend the relatively 1larger cost increment for single bit
correction (5 bits on a 16-bit word is a 32% increase in memory
price alone, without considering the correction logic itself or

any access time delay imposed).

3.3 Memory Maiiagement

The purpose of memory management is to separate the virtual
address space seen by the processor from the actual memory
configuration, the physical address space. The memory manager
serves as an interface between these two spaces, translating
(mapping) virtual addresses into physical addresses. The time
of the mapping 1is also a convenient one to do some ancillary

functions, like protection. There are many reasons for providing

- 19 o

Report No. 3972 Bolt Beranek and Newman Inc.

such a separation but the main idea is to isolate the programmer
from the vagaries of the hardware. The program should be
insensitive to what processing nodes or memory modules actually
exist, or even where a particular piece of data actually resides.
The programmer tags a "thing" (code page, data structure, word of
memory, etc.) with an invariant name (its virtual address). The
job of the memory management system is to make sure that when
that virtual address is referenced, it is directed to the proper

place.

The system that we choose is a simple one. The physical
address (as output by the memory manager) is sufficient to locate
any word in any processing node in the entire machine. That is,
encoded within it is a processing node number and a 1location
within the memory of that processing node. A process selects
which objects it needs to reference and, with the assistance of
the operating environment, the local memory manager is set up
with the physical addresses of those objects. When an access 1is
made, the memory manager converts the virtual address to a
physical address and simple address recognition logic decides 1if
that 1is 1located in this processing node. If not, the physical
address is handed to the switch interface which tries to get that
data by sending out an appropriate transaction on the switch.
When this reaches the destination processing node, the incoming
request for a word has a physical address contained in the
requesting transaction. Thus the switch interface can directly

access the local memory for the word and return it.

- 20 -

Report No. 3972 Bolt Beranek and Newman Inc.

A complication arises should the operating environment
decide to move an object to a different physical address. 1In
that case, all the memory managers which contain a pointer to
this object must be updated. The operating environment can do
this by informing each processing node each time it wishes to
make such a chanée. If we were planning a classic paging system,
with pages of memory moving about all the time, this would not be
a good scheme. As it is, we do not envision the need to move
things around very much, and so this safe, easy to wunderstand

mechanism should not be a burden.

Zilog 1is planning to introduce a memory management chip to
perform some of these functions. It accepts 23-bit virtual
addresses: 7 bits of "segment" and 16 bits of displacement within
that segment. The output is a 24-bit physical address. (All
addresses are in terms of bytes.) For each segment, an internal

memory contains:

16 bits of offset (in units of 2%%*8 bytes)
8 bits of size (in units of 2%*8 bytes)
8 bits of attributes:

R/W vs. R only
system vs. user
execute vs. data
exclude DMA
invalid entry
segment changed
segment referenced
something else

s 21 -

Report No. 3972 Bolt Beranek and Newman Inc.

Although the basic functionality of this device seems to
meet our needs, there is some question about whether the virtuél
4 and physical address spaces are large enough. A 24-bit physical

address seems 1like a lot, but if we have 64K words of memory in 4

each node, that limits us to 128 nodes. This 1is certainly
adequate for our immediate needs and looks as if it can easily be
expanded if future needs dictate. On the virtual side, we are
limited to 128 active segments at any time. Our current
expectation 1is that this will be adequate. In any case, the
address spaces offered by the Z8000 and its memory manager are

much larger than anything offered by other microprocessors.
3.4 Local I/O

The key idea here is to lever our effort by taking maximum
advantage of the devices offered by the processor's manufacturer.
By using the units that the processor expects, we benefit from
the manufacturer's efforts to ensure that they integrate well and

work together properly.

In our case, Zilog is developing a line of I/0 devices which
can be attached to the Z-Bus (the Z8000 I/0 bus). For the many
vocoder interfaces, we will probably use the Z-SIO, a serial 1I/0
device capable . of interfacing asynchronous, bit-stuffing
synchronous, and byte-stuffing synchronous protocols. It should
be possible to program this device to support a very wide range

of vocoder types. Should we need some very low level processing

associated with an I/0 interface, we <can use the Z-UPC, an

- PP -

Report No. 3972 Bolt Beranek and Newman Inc.

integrated processor, memory, and I/0 chip (actually a Z-8) that

is interfaced to the Z-Bus.

For the high bandwidth connection, the Z-SIO is too slow
since its maximum rate is only 800 kbps. Probably the best
choice 1is some custom 1logic attached to a Z-MBU, a FIFO with

interface logic which also attaches to the Z-Bus.

3.5 Switch Interface

Before we discuss the switch interface, it is important to
distinguish between two methods of wusing the switch: one is
word-at-a-time, the other is via messages. In a tightly coupled
multiprocessor, the processor often wants to access distant
memory in the same way it accesses a word in 1local memory.
Notice that in this model, the processor 1is passive as the

transaction is manipulated.

In a message-based system, a processing node is a
self-sufficient unit which actively communicates with other
processing nodes. Processor instructions (or microcode)
explicitly set up a message and send it out. A processing node
would presumably always have a buffer set up for incoming
messages. Upon receipt of one, the processor would be
interrupted, and would explicitly deal with the message. As an
example, these messages could be of the form "please give me word
x". Presumably, it would be more efficient to send requests at a
higher 1level of abstraction, i.e. ask to do more complicated

things.
- 23 -

Report No. 3672 Bolt Beranek and Newman Inc.

Let us look at what the word-at-a-time model implies. First
consider a processor request. The memory manager must decide
whether the word desired is in local memory (or I/0) space. If
not in this processing node, it signals the switch interface that
this is a requeét which it must dezl with. The processor is told
to wait and the switch interface forms up the message. The
latter procedure consists of taking the physical address output
by the memory management ard concatenating it with some
appropriate 1leader and trailer information. When the result
returns (we know it is a result from a previous access because of
some type codes), the switch interface hardware hands the result

to the processor and allows the processor to continue.

A message model, on the other hand, implies some hardware
which is more like a DMA device. The processor would tell the
switech interface the limits of the message in memory. The switch
interfaca would then send an appropriate leader and then pull the
words out of memory as they were needed to be sent out to the
switch. A receiving side of the interface would also have buffer
pointers into memory; when a transaction started arriving from
the switch, words would be dumped into memory. On cumpletion,

the processor would be interrupted.

We have discussed the message type switch interface as if it
all lived in physical space. Another possibility 1is that the
DMA-like device 1is just like any other I/0 device and sends its
"requests" (to send words out the switch interface) through the

memory management box.
- 2l =

‘e

Report No. 3972 Bolt Beranek and Newman Inc.

So what jobs must the switch interface do? (Let us assume
for the moment that we are wusing the word-at-a-time model.)

There are 3 kinds of transactions:

1. The processor accesses distant memory.

2. A result from an access of type 1 returns and is
delivered to the processor.

3. A request from some other processing node requests a

word from this local memory.

Types 1 and 2 interlock completely; only one request can ever be
outstanding at any time and a type 1 can never be issued until
the matching type 2 for the previous type 1 occurs. (N.B. This
is NOT so true if there are master-type I/0 devices and the
processor can be held up without tying up the bus, e.g., it uses
a transaction bus.) Type 3 accesses, however, can happen at any
time and in any quantity. Note also that type 3 accesses
conflict with both types 1 and 2. There must be some internal
flow control mechanism which does not allow an access if it

conflicts with one already in progress.

The memory alsc sees another kind of access which we can add

to the above list:

4, Processor accesses local memory.

Notice the small number of possible accesses between the
processor, the memory, and the switch interface. Each of the

three destinations has at most two sources as follows:

. 26 =

Report No.

Since there are only a small number of combinations and it

is easy

occurring, the hardware which implements the switch interface can

to

3972

be very simple.

How does a message transaction fit in to

The switch

switch,

memory as

Destination

Memory
Memory
Switch(T)
Switeh(T)
Processor

Processor

interface

the message flows through.

and then continue to

Source

Processor
Switch(R)
Processor
Memory
Memory

Switch(R)

start

get (or

switch compare with that of memory?

the beginning

conflicts and tries to blaze a path through the switch, but

that has occurred, the message can then flow.

of sending

a mesSsa

the switch is slower than memory, the

the switch

Bolt Beranek and Newman Inc.

Type

[AC T — S VN }

state which actions are not allowed when others are

this

the transaction through the

put) words from (into)

There may well be delays at

ge, as the header encounters

memory must be

is faster than memory, we have accomplished nothing,

except creating the necessity for a

causing more

conflicts

in the switch.

flow=-control

the memory and switch speeds are closely matched.

description?

How does the speed of the

once
At this point, if
idle. If

mechanism and

Thus we can assume that

Report No. 3972 Bolt Beranek and Newman Inc.

A corollary to this is that when a message 1is "streaming",
no other accesses can occur to the processing node's mémory. We
must make sure that this does not affect other real-time
dependent functions, such as servicing a rotating memory, etc.
We have a particular problem with memory refresh, but if the
memory design allows, we can take advantage of the fact that
switch I/0 will be to consecutive addresses and thus may be able

to perform the refresh directly.

At this time, it seems that both the word-at-a-time model
and the message model are relevant. The word-at-a-time model
permits tight coupling and low delay while messages are critical
to high bandwidth transfers; it 1is our current intention to

support both models in the hardware.

“« 27

W——

Report No. 3672 Bolt Beranek and Newman Inc.

DISTRIBUTION OF THIS REPORT

Defense Advanced Research Projects Agency

Dr. Robert E. Kahn (2)

Jane D. Hensley (1)
Defense Documentation Center (12)

Bolt Beranek and Newman Inc.

Library
Library, Canoga Park Office

: R. Brooks

g v/
.

Castleman

Clark

Heart

Hunt

Hyde
Kraley
Rettberg

Starr

Walden

Wolf

& &M 9 m ®» T B o M =

Wyman !

